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Auto Floodgate Control Using EnKf-NMPC Method
Evita Purnaningrum and Erna Apriliani

Abstract—One of the flood controls, especially in the down-
stream areas are barrage. Those are optimized using Ensemble
Kalman filter based non linear predictive control. Ensemble
Kalman Filter is used to predict water levels and flow of waters
when it reaches the barrage. The results obtained from this
method is then used as input for controlling the floodgates.
Simulations are performed in three circumstances, namely the
normal flow, flooding and drought. For normal flow, using
optimum quantities are obtained from NMPC by opening the
floodgates. Simulations were performed for 100 hours, with a
gap of 5 per hour of observation. EnKf fulfilled with RMSE
yields accuracy of the system and estimates of less than 1, RMSE
debit is 0.5346 and RMSE water level is 0.2716. Furthermore
the operation of the opening gate achieves optimum value, with
the movement of between 40 − 65 per cent, with an average
difference of movement is 0.10065 percent. Flood conditions, the
water flow 2, 000 m3/s and the water level 10 m operation of
opening gate ranging between 98−100 per cent and the amount
of the difference opening gate is 0.028835. RMSE to estimate the
flow rate of 1.5835, while for the water level of 0.3145. While
the flow conditions dry, with water flow 10 m3/s and the water
level 1 m operation of opening gate ranging between 0 − 1 per
cent and the amount of the difference opening gate is 0.41289
percent. RMSE to estimate the flow rate of 0.0826, while for the
water level of 0.0677.

Index Terms—Floodgate Control, estimation, ensemble
Kalman filter, nonlinear MPC.

I. INTRODUCTION

FLOOD is the event of the setting of the mainland (which
is usually dry) because of increased water volume. Floods

can also be defined as extreme discharge of a river. Flooding
can occur due to excessive water in a result of a big rain, river
water, river or dam outbreak due to a tropical storm. Flooding
occurs due to various factors such as natural and human action
itself. Naturally flooding occurred due to high rainfall, the
effect of physiography (the shape of the river), erosion and
sedimentation, river capacity. Of the various factors needed
serious handling of the the problem of flooding is often called
flood control.

Flood control can be done by the barrage. The barrage has
floodgate control that can open and close. It can be utilized by
the surrounding community. In the rainy season it can be used
as flood control, during the dry season can be used as water
irrigation for farms and potentially also as a tourist spot. The
problem that arises is when the arrival of waters toward the
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barrage is uncertain, and unscrew the water dam operations.
The opening level of the gate should be such that no overflow
water through the top of barrage. So it is necessary to control
the floodgates to operate with a maximum.

The barrage is a building that cross through the river which
is equipped with a water gate. Sluice aims to regulate the
water level in the dam. Weir motion has a small water level
changes. Often built when the edges / or frequent low river
bank built in the downstream areas of the river. Closing the
sluice gates only occur during the low water level and when a
flood opened fully so that flooding can pass through the weir.

In the operation of the floodgate required height of water
level in the reservoir. In calculating the water level, we con-
sider the flow of the river before the barrage and hydrological
cycle that occurs in reservoir. Estimates of inflow of the river
is necessary because the water flow is uncertain.

The authors of [1] have conducted a research on the appli-
cation of Kalman filter based on non linear MPC to control
the floodgates. This method is used to control the water that
will be used as a hydroelectric power plant. With the result
that it can replace manual controls with NMPC to control
the floodgates to safeguard the environment from flooding.
Additionally [2] has done research on flood forecasting using
hydrodynamics model using the Kalman filter method, the
result is that the predicted outcome of the measured data and
the accuracy is higher than using Hydraulic models.

In this work, the previous research that has been done by
[1] will be applied and developed in the motion control sluice
weir located on the river to overcome the problem of flooding.
Many techniques have been used to predict floods, based on
the model hydraulic routing. Compared with other methods
Kalman filter is a method that is efficient to predict real-time
flood series because it is based on the estimation of minimum
variance so that it can reach the estimated optimum of state
variables in the system. Meanwhile, interpolation dynamic
consistently able to update the entire state of system modelling
based information from measurement [2]. We use a variation
of Kalman filter called ensemble Kalman filter (EnKF). The
advantages of the method is ensemble Kalman filter can be
used in non linear equations without having to linearize the
model. Movement of waters from the floodgate’s barrage will
be controlled by using non linear MPC (Model Predictive
Control). In estimating the concentration of pollution of un-
derground, ensemble Kalman filter gives better accuracy but
requires more time compared with Kalman filter [3].

II. MODEL

A. One-Dimensional Hydrodynamics Model

Hydrodynamics study the movement of waters and the force
acting on the water. Hydrodynamic model equations have
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the form of a one-dimensional, two-dimensional and three-
dimensional model. The equation of one-dimensional (1D) is
defined in the coordinate space, and the direction perpendicular
to the main channel is ignored. This model is often used in
shallow streams and does not have any steady flow. One-
dimensional hydrodynamic model equation is often called the
St. Venant equation. Here is the equation of conservation of
mass and momentum:
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B denotes width of the surface of the river, A denotes the
sectional area, Q denotes the output, y denotes the elevation
of the water surface, Sf denotes the shift in flatness due
to resistance, α denotes the coefficient correction momentum
(1.0), and g denotes the coefficient of gravity acceleration,
R is the hydraulic radius, P is the circumference of wet
cross-section of the river. The discretization method is 4-
point Preissmann using implicit scheme. Preissmann method
is illustrated in Fig. 1.

Fig. 1. 4-Point Preissmann Scheme

In Fig. 1, ∆x is the space interval, ∆t is the time interval,
ϕ is the weighting coefficient of distribution form in space,
0 ≤ ϕ ≤ 1, θ is the weighting coefficient of distributions
on time, 0 ≤ θ ≤ 1. We assume ϕ = 1

2 , which means that
the achievement is at the mid-point between the point i and
i + 1. To predict the state at time at j + 1, we use EnKF
(Ensemble Kalman filter) method. Because non linear forms
are too complex to be formed directly into the state equation
in the Kalman filter, then we leverage matrix formation using
Newton-Raphson method. We acquire the following equation:

Xk+1 = Xk − J−1F(xk) (3)

Fig. 2. Floodgate [1]

where X,F are vectors with Fi(x1, x2, ....., xn) = Fi(~x) = 0.
Function F is a result of discretization of the equation for
conservation of mass and momentum. Variable J is a derivative
function from F .

B. Reservoir Model

The reservoir model obtained from the continuity equation
assumes that the water is inelastic. The value of the geometry
of the reservoir is As[η(t)], this means that the outside area
depends on the water level at that time. Reservoir models are
not linear equations, given as follows:

dη

dt
=

1

As[η(t)]
Qin −Qout (4)

Qout = Qp +QG (5)

where η is the water level, As is the surface area, Qin is the
debit inflow, Qout is the debit outflow, Qp is the outflow for
irrigation, QG is the outflow from floodgates.

C. Floodgates Barrage

Barrage has a floodgate that serves as the controlling inflow,
outflow and water level. Opening gate type of barrage is
revolving gates that can be seen in Fig. 2. The equation of
the floodgates is a non linear equations [1].

QG = ε.OP.AG.
√

2g∆η (6)

∆η = η − ZD (7)

where AG is the area of the sluice, OP is the opening gate, SD
is the downstream level, g is the acceleration of gravity, η is
the elevation of waters, ε is the output coefficients. Parameter
ε can be estimated based on the model variations and the
floodgates with reality. The limit for parameter level ε is
[ 400
AG
√
2g.6,3

, 400
AG.
√
2g.3,75

].
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III. METHODOLOGY

A. Ensemble Kalman Filter

Ensemble Kalman filter (EnKf) was first introduced by
[4], which uses statistical sample ensemble forecasting on
nonlinear systems. The general form of EnKf in the stochastic
nonlinear dynamical systems is

xk+1 = f(xk, uk) + wk (8)

where the linear measurement data zk ∈ < is defined as:

zk = Hkxk + vk (9)

x0 ∼ N(x̄0, PX0); wk ∼ N(0, Qk); vk ∼ N(0, Rk)

where xk is the state variable at time k, uk is the input vector
at time k, zk is the measured data at time k, Hk is the matrix
of measurement that indicates the measured variable. Finally
wk and vk are a white noise and measurement system white
noise with zero mean and covariance Qk and Rk, respectively.

The estimation process begins with developing a number of
EnKF ensembles with mean 0 and covariance 1. This ensemble
is generated by using the random normal distribution.

Ensemble Kalman filter algorithm:
1) estimating initial

• generate N-ensemble from the initial value

x0 = [x0,1, x0,2, x0,3, ..., x0,N ]

where x0,j ∼ N(X̄0, P0), j = 0, 1, 2, ...., N −1, N .
• the initial value

x̂k = x̂∗k =
1

N
ΣNj=1x0,j

2) time update
• generate the N-ensemble of time update estimation

x̂−k,j = f(x̄k−1, uk−1) + wk,j

where wk,j ∼ N(0, Qk)
• the mean of time update estimation

x̂−k =
1

N
ΣNj=1x̂

−
k,j

• error covariance of time update estimation

P−k =
1

N − 1
ΣNj=1(x̂−k,j − x̂

−
k )(x−k,j − x̂

−
k )T

3) measurement update
• generate the ensemble of measurement data

zk,j = zk + vk,j

where vk,j ∼ N(0, Rk) are the ensemble of mea-
surement noises

• Kalman gain

Kk = P−k H
T (HP−k H

T +Rk)−1

• measurement update estimation

x̂k,j = x̂−k,j +Kk(zk,j −Hx̂−k,j)

• the mean of measurement update estimation

x̂k =
1

N
ΣNj=1x̂k,j

• error covariance of measurement update estimation

Pk = [1−KkH]P−k

B. Nonlinear Model Predictive Control

A nonlinear model predictive control (henceforth abbrevi-
ated as NMPC) is an optimization method based on feedback
control of nonlinear systems. The basis of this application
is the stabilization and tracking problems, that became the
basis of model predictive control [5]. The steps in nonlinear

Fig. 3. Step of NMPC

predictive control models are given in Fig. 3:
1) getting measurement/estimation the system
2) calculate the input signal with minimum objective func-

tion by providing a prediction horizon using a model of
the system.

3) implementing step 1 of the input signal to the optimum
until the new measurement/estimation of the state is
available.

4) back to step 1
Implementation of the NMPC are open and close the opening
gate. The model is a combination between the floodgate and
reservoir models. After discretization given in the NMPC
formula, the objective function is

J = Σ
ηp
k=1e

2(k) + λΣηek=1∆OP 2(k) (10a)

e(k) = ηset(k)− η(k) (10b)

∆OP (k) = OP (k)−OP (k − 1) (10c)

η(k) =
1

Asη(k)
(Qin(k)−Qout) + η(k − 1) (10d)

Qout = Qp(k) + εOP (k)AG
√

2g(η(k)− ZD) (10e)

where J is the objective function, η is the water level , λ is the
optimization parameter, k is the time index. In other words, the
objective is calculating the gate opening in the control horizon
to minimize costs. The algorithm is as follows:

min JΣ
ηp
k=1e

2(k) + λΣηek=1∆OP 2(k) (11)

The constraints are

0 ≤ OP (k) ≤ 100 (12a)

ZD ≤ η(k) ≤ ηedge (12b)

where ηedge is the level of reservoirs.
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IV. ANALYSIS AND RESULT

Before estimating inflow using ensemble Kalman filter,
let us describe initial value and the estimated value of the
required parameters. The initial value of the phase estimate
is Q(x, 0) = 200m3/s, y(x, 0) = 3m for a normal flow,
Q(x, 0) = 2000m3/s, y(x, 0) = 10m at the time of the flood,
and Q(x, 0) = 10m3/s,y(x, 0) = 1m at the time of drought.
The length of the river is assumed to be 30km. The time
interval is 100 hours. Furthermore, the estimated value to zero
sought x̂0 to initial value in a number of ensembles. Thus we
obtain the covariance Px0

. By using the steps in accordance
with the methodology described above, the final result is
estimated inflow rate chart on the barrage. The observation
data at the first place of observation, middle, and the end
of rivers (15 meters far away from the barrage). Table of
parameter values can seen in Table I.

TABLE I
THE PARAMETER VALUE OF RIVER

Information Symbol Value Unit
Gravitation g 9.8 m/s
River Length Pnj 30000 m
River Width B 180 m
Weight Time Coefficient θ 0.55 −
Hydrography Amplification Coefficient ρ 20 −
Skewness Coefficient γ 1.2 m
Time maximum of Discharge τ 57.7 −
The Wetted Perimeter P 540 m
Manning Coefficient n 0.014 −
Surface Area of Reservoir As 500 m
Width of Gate AG 122.5 m2

The first simulations are carried out during normal flow.
This means that the flow rate of the river is still in the normal
range, normal discharge and water level, initial value of the
discharge at the first observation point is 200 m3/s with a
water level of 3 m. This occurs in the transition between the
dry and rainy seasons, the irrigation needs are still met. The
figure of normal inflow can be seen in Fig. 4.

Fig. 4. The top and bottom plots represent water level and discharges from
upstream to downstream, respectively.

Value of discharges and water level at the last point of
observation used as input (Qin) to the reservoir model of
barrage. Graph of the discharge and the height of river flow at
the last point of observation (within 1.5 km from the water)
can be seen in Fig. 5.

Fig. 5. The top and bottom plots represent water level and discharges at the
downstream.

Figure 5 shows that the estimate values are close to the
real values. With the ensemble Kalman filter method, we
can determine that the water level and river discharge were
unsteady flow. This is the equation of Root Mean Squared
Error (RMSE) to measure the difference between estimated
value and the system value, if the RMSE is close to zero, its
mean estimation value is close to the real value:

RMSE =

√
Σnt=1(xt − x̂t)2

n
(13)

Where RMSE is the root mean squared error, t is the time
of observations, n is the time limit of observations, xt is the
state variable value from the system at time t, and x̂t is the
estimation value from state variable at time t. The simulation
time (t) is 100 hours. In the next stage, the inflow is used as
input to the system of floodgate control. The NMPC system
requires sampling time. Here are the results of NMPC method,
to control the floodgate, the state variables are water levels’
barrage.

Fig. 6. Water level of the barrage.
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Fig. 7. Opening gate.

The result of opening Gate at the normal condition can be
seen in the Table II.

TABLE II
THE RESULT OF AUTO FLOODGATE CONTROL USING ENKF-NMPC

METHOD FOR 100 HOURS IN FIVE SAMPLING TIMES.

No Inflow Surface Water Elevation Opening gate J Value
(m3/s) (meter) (percent) ×1035

1 200.0883 5 50 9.5367
2 207.5179 2.8102 49.7607 9.5367
3 207.6061 2.7562 49.8203 9.5367
4 207.7207 2.7551 49.9303 9.5367
5 207.3986 2.735 50.1433 9.5367
6 207.9103 9.8762 50.0983 9.5367
7 207.9436 2.8202 49.9768 9.5367
8 207.8687 2.7844 49.8773 9.5367
9 207.3453 2.8092 49.9402 9.5367
10 207.3609 2.7924 50.0262 9.5367
11 207.9307 2.7331 49.9386 9.5367
12 207.0559 2.7805 49.9431 9.5367
13 207.2424 2.7968 49.9462 9.5367
14 207.5152 2.7952 49.8492 9.5367
15 207.7827 2.7806 50.0624 9.5367
16 207.7096 2.7551 50.0064 9.5367
17 207.5791 2.773 50.1618 9.5367
18 207.7407 2.7833 49.9769 9.5367
19 207.6256 2.8181 50.0187 9.5367
20 207.3892 2.7967 50.1514 9.5367

Table II shows the value of a water level of the barrage,
the cost function and the auto floodgate. The inflow (Qin)
is generated from the estimation using EnKf. Data shown in
the table are the simulated data every 5 hours. The movement
of the barrage ranges between 49 to 51 percents. This means
that the energy is used sparingly, and reduce the cost needed
to drive the floodgates.

The results of the simulation of auto floodgate at the time
of the flood and dry can be seen in Figs. 8 and 9.

Application of the ensemble Kalman filter-Nonlinear model
predictive control method to control the opening gate with
different cases obtained the following results:
• In the condition of normal flow, the water flow is 200
m3/s and the water level is 3m. Operation of door
movements ranging between 49 − 51 percent with an
average cost function of 9.5367 × 1035 and the average
difference between opening gate is 0.10065 percent. This
means that the energy changes during operation of the
weir motion is 0.10065 percent. RMSE to estimate the
flow rate is 0.5346, while for the water level is 0.2716.
The average velocity of flow is 0.3139m/s.

Fig. 8. Opening gate flood.

Fig. 9. Opening gate dry.

• The condition of large flow (flooding), with a water flow
2, 000 m3/s and the water level of 10 m. Operation of
door movements ranging between 98-100 percent with
minimum constraint functions of 0.44882 × 1035 and
the amount of the difference opening gate is 0.028835.
RMSE to estimate the flow rate is 1.5835, while for the
water level is 0.3145. The average velocity of flow is
1.1012 m/s.

• The condition of dry, with water flow 10 m3/s and
the water level 1 m. Operation of door movements
ranging between 0−1 percent of the constraint functions
minimum is 9.536745 × 1035, and the amount of the
difference opening gate is 0.41289. RMSE to estimate the
flow rate is 0.0826, while for the water level is 0.0677.
The average velocity of flow is 0039 m/s.

V. CONCLUSION

Based on the results and analysis, it can be concluded that:
1) Ensemble Kalman filter method can be applied to esti-

mate the discharge and the height of the river flow, and
inflow rate of barrage. It is evident from the RMS error
that is relatively small in each state.

2) The results showed that the ensemble Kalman filter-
nonlinear model predictive control method is an effective
method to estimate the discharge and the height of the
river flow by RMSE less than 1, and the change in gate
opening is less than 25 percent. EnKf-NMPC method
automation can replace manual opening gate.
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